
Package: flintyR (via r-universe)
September 1, 2024

Title Flexible and Interpretable Non-Parametric Tests of
Exchangeability

Version 0.0.2

Date 2021-09-27

Description Given a multivariate dataset and some knowledge about the
dependencies between its features, it is important to ensure
the observations or individuals are exchangeable before fitting
a model to the data in order to make inferences from it, or
assigning randomized treatments in order to estimate treatment
effects. This package provides a flexible non-parametric test
of exchangeability, allowing the user to specify the feature
dependencies by hand. It can be used directly to evaluate
whether a sample is exchangeable, and can also be piped into
larger procedures that require exchangeable samples as outputs
(e.g., clustering or community detection). See Aw, Spence and
Song (2021+) for the accompanying paper.

License GPL (>= 3)

Imports Rcpp (>= 1.0.6), doParallel, foreach, assertthat, testthat,
stats

Suggests rmarkdown, knitr, devtools, tidyverse

LinkingTo Rcpp, RcppArmadillo

URL https://alanaw1.github.io/flintyR/

BugReports https://github.com/alanaw1/flintyR/issues

RoxygenNote 7.2.0

Config/testthat/edition 3

Repository https://alanaw1.r-universe.dev

RemoteUrl https://github.com/alanaw1/flintyr

RemoteRef HEAD

RemoteSha f7af5ba682760b24b673c4e250a2ad0b4f821f25

1

https://alanaw1.github.io/flintyR/
https://github.com/alanaw1/flintyR/issues

2 flintyR-package

Contents

flintyR-package . 2
blockGaussian . 3
blockLargeP . 4
blockPermute . 4
buildForward . 5
buildReverse . 6
cacheBlockPermute1 . 6
cacheBlockPermute2 . 7
cachePermute . 8
distDataLargeP . 8
distDataPermute . 9
distDataPValue . 10
getBinVStat . 10
getBlockCov . 11
getChi2Weights . 12
getCov . 12
getHammingDistance . 13
getLpDistance . 14
getPValue . 14
getRealVStat . 17
hamming_bitwise . 18
indGaussian . 18
indLargeP . 19
lp_distance . 20
naiveBlockPermute1 . 20
naiveBlockPermute2 . 21
weightedChi2P . 22

Index 23

flintyR-package Flexible and Interpretable Non-Parametric Tests of Exchangeability

Description

Given a multivariate dataset and some knowledge about the dependencies between its features, it is
important to ensure the observations or individuals are exchangeable before fitting a model to the
data in order to make inferences from it, or assigning randomized treatments in order to estimate
treatment effects. This package provides a flexible non-parametric test of exchangeability, allowing
the user to specify the feature dependencies by hand. It can be used directly to evaluate whether
a sample is exchangeable, and can also be piped into larger procedures that require exchangeable
samples as outputs (e.g., clustering or community detection). See Aw, Spence and Song (2021+)
for the accompanying paper.

blockGaussian 3

Package Content

Index: This package was not yet installed at build time.

Maintainer

Alan Aw <alanaw1@berkeley.edu>

Author(s)

Alan Aw [cre, aut] (<https://orcid.org/0000-0001-9455-7878>), Jeffrey Spence [ctb]

blockGaussian Approximate p-value for Test of Exchangeability (Assuming Large N
and P with Block Dependencies)

Description

Computes the large (N,P) asymptotic p-value for dataset X, assuming its P features are indepen-
dent within specified blocks.

Usage

blockGaussian(X, block_boundaries, block_labels, p)

Arguments

X The binary or real matrix on which to perform test of exchangeability
block_boundaries

Vector denoting the positions where a new block of non-independent features
starts.

block_labels Length P vector recording the block label of each feature.

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)

Details

This is the large N and large P asymptotics of the permutation test.

Dependencies: getBinVStat, getRealVStat, getBlockCov, getChi2Weights

Value

The asymptotic p-value

4 blockPermute

blockLargeP Approximate p-value for Test of Exchangeability (Assuming Large P
with Block Dependencies)

Description

Computes the large P asymptotic p-value for dataset X, assuming its P features are independent
within specified blocks.

Usage

blockLargeP(X, block_boundaries, block_labels, p = 2)

Arguments

X The binary or real matrix on which to perform test of exchangeability

block_boundaries

Vector denoting the positions where a new block of non-independent features
starts.

block_labels Length P vector recording the block label of each feature.

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)

Details

This is the large P asymptotics of the permutation test.

Dependencies: getBinVStat, getRealVStat, getChi2Weights, weightedChi2P, getBlockCov

Value

The asymptotic p-value

blockPermute p-value Computation for Test of Exchangeability with Block Depen-
dencies

Description

Generates a block permutation p-value. Uses a heuristic to decide whether to use distance caching
or simple block permutations.

buildForward 5

Usage

blockPermute(
X,
block_boundaries = NULL,
block_labels = NULL,
nruns,
type,
p = 2

)

Arguments

X The binary or real matrix on which to perform permutation resampling
block_boundaries

Vector denoting the positions where a new block of non-independent features
starts. Default is NULL.

block_labels Length P vector recording the block label of each feature. Default is NULL.

nruns The resampling number (use at least 1000)

type Either an unbiased estimate (‘’unbiased’‘, default), or exact (‘’valid’‘) p-value
(see Hemerik and Goeman, 2018), or both (‘’both’‘). Default is ‘’unbiased’‘.

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)

Details

Dependencies: buildForward, buildReverse, cachePermute, cacheBlockPermute1, cacheBlockPer-
mute2, getHammingDistance, getLpDistance, naiveBlockPermute1, naiveBlockPermute2

Value

The block permutation p-value

buildForward Map from Indices to Label Pairs

Description

Builds a map from indexes to pairs of labels. This is for caching distances, to avoid recomputing
Hamming distances especially when dealing with high-dimensional (large P) matrices.

Usage

buildForward(N)

Arguments

N Sample size, i.e., nrow(X)

6 cacheBlockPermute1

Details

Dependencies: None

Value

N × N matrix whose entries record the index corresponding to the pair of labels (indexed by the
matrix dims)

buildReverse Map from Label Pairs to Indices

Description

Builds a map from pairs of labels to indexes. This is for caching distances, to avoid recomputing
Hamming distances especially when dealing with high-dimensional (large P) matrices.

Usage

buildReverse(N)

Arguments

N Sample size, i.e., nrow(X)

Details

Dependencies: None

Value

N × N matrix whose entries record the index corresponding to the pair of labels (indexed by the
matrix dims)

cacheBlockPermute1 Resampling Many V Statistics (Version 1)

Description

Generates a block permutation distribution of V statistic. Precomputes distances and some indexing
arrays to quickly generate samples from the block permutation distribution of the V statistic of X.

Usage

cacheBlockPermute1(X, block_labels, nruns, p = 2)

cacheBlockPermute2 7

Arguments

X The binary or real matrix on which to perform permutation resampling

block_labels Length P vector recording the block label of each feature

nruns The resampling number (use at least 1000)

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)

Details

This version is with block labels specified.

Dependencies: buildForward, buildReverse, cachePermute, getHammingDistance, getLpDistance

Value

A vector of resampled values of the V statistic

cacheBlockPermute2 Resampling Many V Statistics (Version 2)

Description

Generates a block permutation distribution of V statistic. Precomputes distances and some indexing
arrays to quickly generate samples from the block permutation distribution of the V statistic of X.

Usage

cacheBlockPermute2(X, block_boundaries, nruns, p = 2)

Arguments

X The binary or real matrix on which to perform permutation resampling
block_boundaries

Vector denoting the positions where a new block of non-independent features
starts

nruns The resampling number (use at least 1000)

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)

Details

This version is with block boundaries specified.

Dependencies: buildForward, buildReverse, cachePermute, getHammingDistance, getLpDistance

Value

A vector of resampled values of the V statistic

8 distDataLargeP

cachePermute Permutation by Caching Distances

Description

What do you do when you have to compute pairwise distances many times, and those damn dis-
tances take a long time to compute? Answer: You cache the distances and permute the underlying
sample labels!

Usage

cachePermute(dists, forward, reverse)

Arguments

dists
(
N
2

)
by B matrix, with each column containing the distances (ex: Hamming, lpp)

for the block

forward N × N matrix mapping the pairs of sample labels to index of the
(
N
2

)
-length

vector

reverse
(
N
2

)
× 2 matrix mapping the index to pairs of sample labels

Details

This function permutes the distances (Hamming, lpp, etc.) within blocks. Permutations respect the
fact that we are actually permuting the underlying labels. Arguments forward and reverse should be
precomputed using buildForward and buildReverse.

Dependencies: buildForward, buildReverse

Value

A matrix with same dimensions as dists containing the block-permuted pairwise distances

distDataLargeP Asymptotic p-value of Exchangeability Using Distance Data

Description

Generates an asymptotic p-value.

Usage

distDataLargeP(dist_list)

distDataPermute 9

Arguments

dist_list The list (length B) of pairwise distance data. Each element in list should be
either a distance matrix or a table recording pairwise distances.

Details

Generates a weighted convolution of chi-squares distribution of V statistic by storing the provided
list of distance data as an

(
N
2

)
×B array, and then using large-P theory to generate the asymptotic

null distribution against which the p-value of observed V statistic is computed.

Each element of dist_list should be a N ×N distance matrix.

Dependencies: buildReverse, getChi2Weights, weightedChi2P

Value

The asymptotic p-value obtained from the weighted convolution of chi-squares distribution.

distDataPermute p-value Computation for Test of Exchangeability Using Distance Data

Description

Generates a block permutation p-value.

Usage

distDataPermute(dist_list, nruns, type)

Arguments

dist_list The list (length B) of pairwise distance data. Each element in list should be
either a distance matrix or a table recording pairwise distances.

nruns The resampling number (use at least 1000)
type Either an unbiased estimate (‘’unbiased’‘, default), or exact (‘’valid’‘) p-value

(see Hemerik and Goeman, 2018), or both (‘’both’‘). Default is ‘’unbiased’‘.

Details

Generates a block permutation distribution of V statistic by storing the provided list of distance
data as an

(
N
2

)
×B array, and then permuting the underlying indices of each individual to generate

resampled
(
N
2

)
×B arrays. The observed V statistic is also computed from the distance data.

Each element of dist_list should be a N ×N distance matrix.

Dependencies: buildForward, buildReverse, cachePermute

Value

The p-value obtained from comparing the empirical tail cdf of the observed V statistic computed
from distance data.

10 getBinVStat

distDataPValue A Non-parametric Test for Exchangeability and Homogeneity (Dis-
tance List Version)

Description

Computes the p-value of a multivariate dataset, which informs the user if the sample is exchangeable
at a given significance level, while simultaneously accounting for feature dependencies. See Aw,
Spence and Song (2021) for details.

Usage

distDataPValue(dist_list, largeP = FALSE, nruns = 1000, type = "unbiased")

Arguments

dist_list The list of distances.

largeP Boolean indicating whether to use large P asymptotics. Default is FALSE.

nruns Resampling number for exact test. Default is 1000.

type Either an unbiased estimate of (‘’unbiased’‘, default), or valid, but biased esti-
mate of, (‘’valid’‘) p-value (see Hemerik and Goeman, 2018), or both (‘’both’‘).
Default is ‘’unbiased’‘.

Details

This version takes in a list of distance matrices recording pairwise distances between individuals
across B independent features.

Dependencies: distDataLargeP and distDataPermute from auxiliary.R

Value

The p-value to be used to test the null hypothesis of exchangeability.

getBinVStat V Statistic for Binary Matrices

Description

Computes V statistic for a binary matrix X, as defined in Aw, Spence and Song (2021+).

Usage

getBinVStat(X)

getBlockCov 11

Arguments

X The N × P binary matrix

Details

Dependencies: getHammingDistance

Value

V (X), the variance of the pairwise Hamming distance between samples

Examples

X <- matrix(nrow = 5, ncol = 10, rbinom(50, 1, 0.5))
getBinVStat(X)

getBlockCov Covariance Computations Between Pairs of Distances (Block Depen-
dencies Case)

Description

Computes covariance matrix entries and associated alpha, beta and gamma quantities defined in Aw,
Spence and Song (2021), for partitionable features that are grouped into blocks. Uses precompu-
tation to compute the unique entries of the asymptotic covariance matrix of the pairwise Hamming
distances in O(N2) time.

Usage

getBlockCov(X, block_boundaries, block_labels, p = 2)

Arguments

X The binary or real matrix
block_boundaries

Vector denoting the positions where a new block of non-independent features
starts.

block_labels Length P vector recording the block label of each feature.

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)

Details

This is used in the large P asymptotics of the permutation test.

Dependencies: buildReverse, getHammingDistance, getLpDistance

12 getCov

Value

The three distinct entries of covariance matrix, (α, β, γ)

getChi2Weights Get Chi Square Weights

Description

Computes weights for the asymptotic random variable from the α, β and γ computed of data array
X.

Usage

getChi2Weights(alpha, beta, gamma, N)

Arguments

alpha covariance matrix entry computed from getCov

beta covariance matrix entry computed from getCov

gamma covariance matrix entry computed from getCov

N The sample size, i.e., nrow(X) where X is the original dataset

Details

This is used in the large P asymptotics of the permutation test.

Dependencies: None

Value

The weights (w1, w2)

getCov Covariance Computations Between Pairs of Distances (Independent
Case)

Description

Computes covariance matrix entries and associated alpha, beta and gamma quantities defined in Aw,
Spence and Song (2021), assuming the P features of the dataset X are independent.

Usage

getCov(X, p = 2)

getHammingDistance 13

Arguments

X The binary or real matrix

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)

Details

This is used in the large P asymptotics of the permutation test.

Dependencies: buildReverse, getLpDistance

Value

The three distinct entries of covariance matrix, (α, β, γ)

getHammingDistance A Hamming Distance Vector Calculator

Description

Computes all pairwise Hamming distances for a binary matrix X.

Usage

getHammingDistance(X)

Arguments

X The N × P binary matrix

Details

Dependencies: hamming_bitwise from fast_dist_calc.cpp

Value

A length
(
N
2

)
vector of pairwise Hamming distances

Examples

X <- matrix(nrow = 5, ncol = 10, rbinom(50, 1, 0.5))
getHammingDistance(X)

14 getPValue

getLpDistance A l_pˆp Distance Vector Calculator

Description

Computes all pairwise lpp distances for a real matrix X, for a specified choice of Minkowski norm
exponent p.

Usage

getLpDistance(X, p)

Arguments

X The N × P real matrix

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)

Details

Dependencies: lp_distance from fast_dist_calc.cpp

Value

A length
(
N
2

)
vector of pairwise lpp distances

Examples

X <- matrix(nrow = 5, ncol = 10, rnorm(50))
getLpDistance(X, p = 2)

getPValue A Non-parametric Test for Exchangeability and Homogeneity

Description

Computes the p-value of a multivariate dataset X, which informs the user if the sample is exchange-
able at a given significance level, while simultaneously accounting for feature dependencies. See
Aw, Spence and Song (2021) for details.

getPValue 15

Usage

getPValue(
X,
block_boundaries = NULL,
block_labels = NULL,
largeP = FALSE,
largeN = FALSE,
nruns = 5000,
type = "unbiased",
p = 2

)

Arguments

X The binary or real matrix on which to perform test of exchangeability.
block_boundaries

Vector denoting the positions where a new block of non-independent features
starts. Default is NULL.

block_labels Length P vector recording the block label of each feature. Default is NULL.

largeP Boolean indicating whether to use large P asymptotics. Default is FALSE.

largeN Boolean indicating whether to use large N asymptotics. Default is FALSE.

nruns Resampling number for exact test. Default is 5000.

type Either an unbiased estimate of (‘’unbiased’‘, default), or valid, but biased esti-
mate of, (‘’valid’‘) p-value (see Hemerik and Goeman, 2018), or both (‘’both’‘).
Default is ‘’unbiased’‘.

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n). Default is 2.

Details

Automatically detects if dataset is binary, and runs the Hamming distance version of test if so.
Otherwise, computes the squared Euclidean distance between samples and evaluates whether the
variance of Euclidean distances, V , is atypically large under the null hypothesis of exchangeability.
Note the user may tweak the choice of power p if they prefer an lpp distance other than Euclidean.

Under the hood, the variance statistic, V , is computed efficiently. Moreover, the user can specify
their choice of block permutations, large P asymptotics, or large P and large N asymptotics. The
latter two return reasonably accurate p-values for moderately large dimensionalities.

User recommendations: When the number of independent blocks B or number of independent
features P is at least 50, it is safe to use large P asymptotics. If P or B is small, however, stick
with permutations.

Dependencies: All functions in auxiliary.R

Value

The p-value to be used to test the null hypothesis of exchangeability.

16 getPValue

Examples

Example 1 (get p-value of small matrix with independent features using exact test)
suppressWarnings(require(doParallel))
registerDoParallel(cores = 2)

X1 <- matrix(nrow = 5, ncol = 10, rbinom(50, 1, 0.5)) # binary matrix, small
getPValue(X1) # perform exact test with 5000 permutations

should be larger than 0.05

Example 2 (get p-value of high-dim matrix with independent features using asymptotic test)
X2 <- matrix(nrow = 10, ncol = 1000, rnorm(1e4)) # real matrix, large enough
getPValue(X2, p = 2, largeP = TRUE) # very fast

should be larger than 0.05
getPValue(X2, p = 2) # slower, do not run (Output: 0.5764)

Example 3 (get p-value of high-dim matrix with partitionable features using exact test)

X3 <- matrix(nrow = 10, ncol = 1000, rbinom(1e4, 1, 0.5))
getPValue(X3, block_labels = rep(c(1,2,3,4,5), 200))

Warning message: # there are features that have zero variation (i.e., all 0s or 1s)
In getPValue(X3, block_labels = rep(c(1, 2, 3, 4, 5), 200)) :
There exist columns with all ones or all zeros for binary X.

Example 4 (get p-value of high-dim matrix with partitionable features using asymptotic test)

This elaborate example generates binarized versions of time series data.

Helper function to binarize a marker
by converting z-scores to {0,1} based on
standard normal quantiles
binarizeMarker <- function(x, freq, ploidy) {
if (ploidy == 1) {
return((x > qnorm(1-freq)) + 0)

} else if (ploidy == 2) {
if (x <= qnorm((1-freq)^2)) {

return(0)
} else if (x <= qnorm(1-freq^2)) {

return(1)
} else return(2)

} else {
cat("Specify valid ploidy number, 1 or 2")

}
}

getAutoRegArray <- function(B, N, maf_l = 0.38, maf_u = 0.5, rho = 0.5, ploid = 1) {
get minor allele frequencies by sampling from uniform
mafs <- runif(B, min = maf_l, max = maf_u)
get AR array
ar_array <- t(replicate(N, arima.sim(n = B, list(ar=rho))))

getRealVStat 17

theoretical column variance
column_var <- 1/(1-rho^2)
rescale so that variance per marker is 1
ar_array <- ar_array / sqrt(column_var)
rescale each column of AR array
for (b in 1:B) {

ar_array[,b] <- sapply(ar_array[,b],
binarizeMarker,
freq = mafs[b],
ploidy = ploid)

}
return(ar_array)
}

Function to generate the data array with desired number of samples
getExHaplotypes <- function(N) {

array <- do.call("cbind",
lapply(1:50, function(x) {getAutoRegArray(N, B = 20)}))

return(array)
}

Generate data and run test
X4 <- getExHaplotypes(10)
getPValue(X4, block_boundaries = seq(from = 1, to = 1000, by = 25), largeP = TRUE)

stopImplicitCluster()

getRealVStat V Statistic for Real Matrices

Description

Computes V statistic for a real matrix X, where V (X) = scaled variance of lpp distances between
the row samples of X.

Usage

getRealVStat(X, p)

Arguments

X The N × P real matrix

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)s

Details

Dependencies: getLpDistance

18 indGaussian

Value

V (X), the variance of the pairwise lpp distance between samples

Examples

X <- matrix(nrow = 5, ncol = 10, rnorm(50))
getRealVStat(X, p = 2)

hamming_bitwise Fast Bitwise Hamming Distance Vector Computation

Description

Takes in a binary matrix X, whose transpose t(X) has N rows, and computes a vector recording all
N choose 2 pairwise Hamming distances of t(X), ordered lexicographically.

Usage

hamming_bitwise(X)

Arguments

X binary matrix (IntegerMatrix class)

Value

vector of Hamming distances (NumericVector class)

Examples

t(X) = [[1,0], [0,1], [1,1]] --> output = [2,1,1]

indGaussian Approximate p-value for Test of Exchangeability (Assuming Large N
and P)

Description

Computes the large (N,P) asymptotic p-value for dataset X, assuming its P features are indepen-
dent

Usage

indGaussian(X, p = 2)

indLargeP 19

Arguments

X The binary or real matrix on which to perform test of exchangeability

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)

Details

This is the large N and large P asymptotics of the permutation test.

Dependencies: getBinVStat, getRealVStat, getCov, getChi2Weights

Value

The asymptotic p-value

indLargeP Approximate p-value for Test of Exchangeability (Assuming Large P)

Description

Computes the large P asymptotic p-value for dataset X, assuming its P features are independent.

Usage

indLargeP(X, p = 2)

Arguments

X The binary or real matrix on which to perform test of exchangeability

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)

Details

This is the large P asymptotics of the permutation test.

Dependencies: getBinVStat, getRealVStat, getChi2Weights, weightedChi2P, getCov

Value

The asymptotic p-value

20 naiveBlockPermute1

lp_distance Fast l_pˆp Distance Vector Computation

Description

Takes in a double matrix X, whose transpose t(X) has N rows, and computes a vector recording all(
N
2

)
pairwise lpp distances of t(X), ordered lexicographically.

Usage

lp_distance(X, p)

Arguments

X double matrix (arma::mat class)

p numeric Minkowski power (double class)

Value

vector of lpp distances (arma::vec class)

Examples

X = [[0.5,0.5],[0,1],[0.3,0.7]] --> lPVec = [x,y,z]
with x = (0.5^p + 0.5^p)

naiveBlockPermute1 Resampling V Statistic (Version 1)

Description

Generates a new array X′ under the permutation null and then returns the V statistic computed for
X′.

Usage

naiveBlockPermute1(X, block_labels, p)

Arguments

X The N × P binary or real matrix

block_labels A vector of length P , whose pth component indicates the block membership of
feature p

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)

naiveBlockPermute2 21

Details

This is Version 1, which takes in the block labels. It is suitable in the most general setting, where
the features are grouped by labels. Given original X and a list denoting labels of each feature,
independently permutes the rows within each block of X and returns resulting V . If block labels
are not specified, then features are assumed independent, which is to say that block_labels is set to
1:ncol(X).
Dependencies: getBinVStat, getRealVStat

Value

V (X′), where X′ is a resampled by permutation of entries blockwise

Examples

X <- matrix(nrow = 5, ncol = 10, rnorm(50)) # real matrix example
naiveBlockPermute1(X, block_labels = c(1,1,2,2,3,3,4,4,5,5), p = 2) # use Euclidean distance

X <- matrix(nrow = 5, ncol = 10, rbinom(50, 1, 0.5)) # binary matrix example
naiveBlockPermute1(X, block_labels = c(1,1,2,2,3,3,4,4,5,5))

naiveBlockPermute2 Resampling V Statistic (Version 2)

Description

Generates a new array X′ under the permutation null and then returns the V statistic computed for
X′.

Usage

naiveBlockPermute2(X, block_boundaries, p)

Arguments

X The N × P binary or real matrix
block_boundaries

A vector of length at most P, whose entries indicate positions at which to demar-
cate blocks

p The power p of lpp, i.e., ||x||pp = (xp
1 + ...xp

n)

Details

This is Version 2, which takes in the block boundaries. It is suitable for use when the features
are already arranged such that the block memberships are determined by index delimiters. Given
original X and a list denoting labels of each feature, independently permutes the rows within each
block of X and returns resulting V . If block labels are not specified, then features are assumed
independent, which is to say that block_labels is set to 1:ncol(X).
Dependencies: getBinVStat, getRealVStat

22 weightedChi2P

Value

V (X′), where X′ is a resampled by permutation of entries blockwise

Examples

X <- matrix(nrow = 5, ncol = 10, rnorm(50)) # real matrix example
naiveBlockPermute2(X, block_boundaries = c(4,7,9), p = 2) # use Euclidean distance

X <- matrix(nrow = 5, ncol = 10, rbinom(50, 1, 0.5)) # binary matrix example
naiveBlockPermute2(X, block_boundaries = c(4,7,9))

weightedChi2P Tail Probability for Chi Square Convolution Random Variable

Description

Computes P (X > val) where X = w1Y +w2Z, where Y is chi square distributed with d1 degrees
of freedom, Z is chi square distributed with d2 degrees of freedom, and w1 and w2 are weights with
w2 assumed positive. The probability is computed using numerical integration of the densities of
the two chi square distributions. (Method: trapezoidal rule)

Usage

weightedChi2P(val, w1, w2, d1, d2)

Arguments

val observed statistic

w1 weight of first chi square rv

w2 weight of second chi square rv, assumed positive

d1 degrees of freedom of first chi square rv

d2 degrees of freedom of second chi square rv

Details

This is used in the large P asymptotics of the permutation test.

Dependencies: None

Value

1 - CDF = P(X > val)

Index

∗ package
flintyR-package, 2

blockGaussian, 3
blockLargeP, 4
blockPermute, 4
buildForward, 5
buildReverse, 6

cacheBlockPermute1, 6
cacheBlockPermute2, 7
cachePermute, 8

distDataLargeP, 8
distDataPermute, 9
distDataPValue, 10

flintyR (flintyR-package), 2
flintyR-package, 2

getBinVStat, 10
getBlockCov, 11
getChi2Weights, 12
getCov, 12
getHammingDistance, 13
getLpDistance, 14
getPValue, 14
getRealVStat, 17

hamming_bitwise, 18

indGaussian, 18
indLargeP, 19

lp_distance, 20

naiveBlockPermute1, 20
naiveBlockPermute2, 21

weightedChi2P, 22

23

	flintyR-package
	blockGaussian
	blockLargeP
	blockPermute
	buildForward
	buildReverse
	cacheBlockPermute1
	cacheBlockPermute2
	cachePermute
	distDataLargeP
	distDataPermute
	distDataPValue
	getBinVStat
	getBlockCov
	getChi2Weights
	getCov
	getHammingDistance
	getLpDistance
	getPValue
	getRealVStat
	hamming_bitwise
	indGaussian
	indLargeP
	lp_distance
	naiveBlockPermute1
	naiveBlockPermute2
	weightedChi2P
	Index

